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01 Introduction. Let p,s,p denote the f l u i d  pressure, 

velocity,  and density. Our s ta r t ing  point is the Eulerian equations 

of motion 

1 all - + (u.gra.d)u + - gradp  = 0 a t  N - P  
Iv 

* +  (E.grad)p + yp d i v g  = 0 (1.2) at 

pp-Y = constant , ( 1 . 3 )  

where y is a r a t i o  of specif ic  heats.  The par t icu lar  case of 

interest  i n  t h i s  paper is the acoustic disturbance about a mean 

flow po ,~o ,po  , where the  pressure has the  form 

irt 
P = Po + e PI J lPl/POI<<l* (1 .4)  

Assuming for  example the mean flow is uniform and neglecting 

quadratic terms we obtain the following: 

(1 .5 )  
1 i r u  + - gradp  = 0 - Po 

yp div u, + i r p  = 0 (1.6) 0 

These equations a re  required t o  hold i n  the flow region 

l inear  combinations of the pressure and normal velocity being 

specif ied on the  boundary r: say 

fl with 

where v denotes the outer normal. 
N 

The goal of t h i s  paper is t o  analyze Galerkin or  mixed 

var ia t iona l  approximations t o  the f i r s t  order system (1 .5 ) - (1 .6 ) .  
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A t  first  g lance  such an  approach may seem t o  be i n f e r i o r  t o  a 

d i s c r e t i z a t i o n  of  (1.5) - ( 1 . 7 )  based on a least  squares  p r i n c i p l e  

[ l ]  . The primary reason for  t h i s  is t h a t  i n  the least  squares  

approach one can  o b t a i n  second o r d e r  accuracy i n  for  both 

u and p by u s i n g  appropr i a t e  piecewise l i n e a r  spaces f o r  each. 

L2 

N 

Such a combination, however, w i l l  be u n s t a b l e  i n  the Galerkin for- 

mulat ion ( [ 2 ] - [ 4 ] ) .  I n  t h e  l a t t e r  one t y p i c a l l y  uses  an appropriate 
* 

piecewise l i n e a r  space f o r  u and a piecewise c o n s t a n t  space for  

p. The degrees  of freedom i n  t h e  l a t t e r a r e v i r t u c l l y  the s a m e  as 

N 

i n  t h e  l e a s t  squares  formulat ion f o r  a. compa.rable g r i d ,  y e t  

y i e l d  only  f i r s t  o r d e r  L2 accuracy i n  p. 

Two somewhat s u r p r i s i n g  r e s u l t s  of t h e  a n a l y s i s  i n  t h i s  paper 

offer hope, however, for  the u t i l i t y  of the Galerk in  approach. 

F i r s t  we  show t h a t  under s u i t a b l e  condi t ions  one has superconver- 

gence in t h e  approximation t o  t h e  pressure .  For example, i f  

denotes  the best L2 approximation t o  p i n  a s u i t a b l e  space of 

piecewise cons tan t  func t ions ,  then  we  s h o w  t h a t  the La e r r o r  

11% - ph\lo i n  the Galerkin approximation ph is a c t u a l l y  second 

o r d e r  i f  app ropr i a t e  l i n e a r  elements a r e  used f o r  the v e l o c i t y  u .  

Oh 

A 

Iv 

Second and of equal  importance, t h e  errors i n  the Galerkin 

approach do n o t  deteriorate as r a p i d l y  when the frequency r 

inc reases .  This is of p a r t i c u l a r  importance i n  underwater a c o u s t i c s  

w h e r e  

r > > l  

is q u i t e  common [ 5 ] .  

This second proper ty  is a l s o  shared  by the s t anda rd  f i n i t e  

element formulation w h e r e  (1 .5)  is d i f f e r e n t i a . t e d  and combined 

4 
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w i t h  (1.6) to give the Helmholtz equation 

A p  + Wp = 0, 

and the  Galerkin method is applied d i rec t ly  t o  (1 .8) .  So long 

as the coeff ic ients  

approach is possibly preferable; however i n  many applications these 

coeff ic ients  come from measurements and are  not smooth enough t o  

be d i f fe ren t ia ted  [l].  I n  such cases one must  dea l  d i rec t ly  with 

po,u4: po from the mean flow are  smooth t h i s  

a f irst  order system l i k e  (1.5)-(1.6).  

Previous work on Galerkin approximations has centered on the 

Poisson equation 

u N - gradep = 0 (1.9) 

div u = f .  
N 

(1.10) 

Let lth denote the f i n i t e  dimensional space of ve loc i t ies  and 

sh t he  f i n i t e  dimensional space of pressures. Brezzi [3] showed 

t h a t  optimal convergence i n  the norms 

w i l l  occur provided 

(1.11) 

(1.12)  

holds for  a fixed a,O<u<oo, independent of h,  where the sup 

is  taken over a l l  i n  Ifh. There are  a var ie ty  of spaces 

sa t i s fy ing  t h i s  condition including piecewise l i nea r  functions on 

a su i tab le  gr id  for  the veloci t ies  and su i tab le  piecewise constants 

f o r  the  pressure [6] .  This conibination gives f i r s t  order accuracy 

i n  the mesh spacing h i n  the norms (1.11). These results a re  

i l i z e d  i n  Section 3 fo r  the acoustic equations. I 
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In subsequent w o r k  (121, [4]) on the Poisson equa t ion  it was shown 

t ha t  optimal accuracy i n  the norms 

can be obtained under appropriate cond i t ions .  

o n e n e e d s t h e  i n c l u s i o n  Property 

I n  p a r t i c u l a r ,  

(1.13) 

(1.14) h Sh = div[U 3 

as w e l l  as a decomposition propertv. The lat ter states there 

is  an  a, O < ~ < c o y  independent of h such t h a t  each x h ~ U h  can 

be w r i t t e n  

c 

4 

w h e r e  b&,zh i n  $’I s a t i s f y  

I n  many mixed f i n i t e  element formulat ions the analogs of 

(1.14)-(1.16) and ( 1 . 1 2 )  a r e  equi-Talent ( 1 7 1 ) .  I n  this  s e t t i n g  

t h e y  a r e  not .  In  f a c t ,  one can S ~ O W  t h a t  i n  th is  c a s e  (1 .12)  is 

e q u i v a l e n t  t o  an inc lus ion  and decomposition p rope r ty  b u t  w i t h  d i f -  

f e r e n t  norms i n  (1 .16)  [ 7 ] .  Nevertheless  t h e  f i n i t e  element 

spaces  which are known t o  s a t i s f y  (1 .14) - (1 .16)  a l s o  s a t i s f y  

( 1 . 1 2 )  and conversely ( [4] ) . In  Sec t ion  4 w e  g e n e r a l i z e  the 

error es t ima tes  u s i n g  (1.14)-(1.16)  t o  cover  the a c o u s t i c  equat ions .  

The most important a s p e c t  of this  a n a l y s i s  is the superconvergence 

i n  the pressure  p. 

4 
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62 The Galerkin formulation. For s implici ty  w e  consider 

the boundary value problem 

U u - grad cp = i n  0 (2.1) 

div CI u + wcp = g i n  n (2  - 2 )  

t p = O  on r ( 2  03) 

The mixed var ia t ional  formulation of t h i s  problem is based on 

Galerkin's method and takes the following form. Given z0cL2(n) , 
g0EL2 (0) find 

such t h a t  

holds for a l l  

( 2  -4 )  
2 u EV = H(div;O)*, uo c p O ~ P 1  = L (h )  

VEV, $E%. The forms are defined as follows: 

# 
(*) H(div;n) consists of vfLi(n) such that: d iv  F veL2'(O). 

e 
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( 2  09) 
8 h E % ,  b h c b  

~ E \ I  h , dlheSh such t h a t  (2.5)-(2.6) holds (with ~f~ and seek 

replaced with LI~ and (Po replaced with ‘ph) fo r  a l l  x ~ b  , 
dI€S 0 

h 4 

h 

It may happen tha t  (2 .1 )  - (2 .3)  does not have a unique solu- 

t ion,  a case which a r i ses  for example if u) is an eigenvalue of 

the homogeneous problem. We expl ic i t ly  r u l e  t h i s  out by assuming that  

I the  adjoint  equation (which i n  t h i s  case is the same as ( 2 . 1 ) - ( 2 . 3 ) )  

is uniquely solvable. More precisely, we assume t h a t  for each 

pair  cf€H(div,n), & L 2 ( n )  there  u s  a unique pair  V E ~ ,  $eS for 

which 

A A 

Iy 

: To approximate we introduce f i n i t e  dimensions' spaces 

(2 .11)  

( 2 . 1 2 )  

holds for a l l  w ~ b ,  CES. Moreover, we assume t h a t  the  solution 

of ( 2 . 1 1 ) - ( 2 . 1 2 )  s a t i s f i e s  the standard ap r io r i  bound for the 

Helmholtz equation 

N 

* 

(2.13) 

A A  A 0  + w,I) = g - div !?. 

Name ly  , 

I \ V ~ ! ~  A + l l & l l l  A 2 KO(llgll-l A + I l f \ l o )  A 
ry N 

The constant KO approaches in f in i ty  with . 

~~ 
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T h e  e f f e c t  of t h e  frequency w i n  our a n a l y s i s  w i l l  also be seen  

i n  t h e  c o n s t a n t  0 < K1 < 00 s a t i s f y i n g  

For t h e  m o d e l  problem (2.1)-(2.3) we can t a k e  

g e n e r a l  a c o u s t i c  equat ions  it w i l l  be a more complicated func- 

t i o n  of w b u t  w i l l  s t i l l  approach i n f i n i t y  l i n e a r l y  w i t h  w .  

K1 = w .  I n  t h e  

As noted i n  t h e  in t roduc t ion  t h e  case u1 = 0 has rece ived  

c o n s i d e r a b l e  a t t e n t i o n .  

f r o m  b X 8  t o  bhXSh - called the Poisson p r o j e c t o r  P h -- as fol-  

lows. W e  le t  

W e  s h a l l  use  t h i s  work t o  d e f i n e  a mapping 

when 

(2.15) 

A $. ) is t h e  mixed f i n i t e  h h  h h  ho lds  for a l l  W €b , ? E$ . That is  (zh'+, 

element approximation t o  the Poisson equat ion  genera ted  by (v  A h  d ) .  
CI 

N J N  

If B r e z z i ' s  oond i t ion  (1 .12 )  holds, then  t h e r e  is a cons t an t  

0 < Ca < coy depending only on the number a i n  (1 .12 )  such 

t h a t  

(2.17) 
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where 

h h h  

Similarly i f  the inclusion and decomposition properties 

and where the inf  is taken over w ~ l r ,  5 ES . (See 131) 
cy 

(1 . 14) - (1 . 16) hold, then 

and 

where 

(2.19) 

(2 .20)  

and now C depends on the  constant a i n  (1.16) (See' 141). a. 
h 

Ir , Throughout t h i s  paper w e  s h a l l  assume t ha t  t h e  spaces 

Sh have the standard approximation properties. More precisely, 

w e  assume that w e  can approximate i n  Uh t o  order k i n  the sense 

tha t  given $EG~(CI)  

(2 .22 )  i n f  (1\w - W, h \lo+ hl\W - w h !Il) 6 CAh k 
N 'CI c1 - 

for  a fixed constant 0 < CA < 00 independent of w, and h.  

Moreover, we assume ( 2 . 2 2 )  holds for k replaced with any smaller 
C 

kl,satisfying 1 < kl 5 k. Similarly, we assume t h a t  for any 



w i t h  this inequal i ty  holding for ?, replaced w i t h  any C1 satis- 

fying 0 < .tl 4 .  For most spaces s a t i s f y i n g  the Brezzi condi- 

t i o n  (1.12)  or the inc lus ion  condit ion (1.14) we have C = k - 1. 
Observe that  i f  ( 2 . 2 2 ) - ( 2 . 2 3 )  hold,  then 

w h i l e  
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$3 The f i r s t  e r ror  estimates. I n  t h i s  sect ion we  assume 

t h a t  Brezzi's condition (1.12) is  val id ,  and estimate the  e r rors  

The proof t h a t  the  d iscre te  system ( 2 . 5 )  -.(2 -6) Eo - &' 90 - 'q.1' * 

on b%Sh has a unique solut ion zh,'ph is similar  i n  s t r u c t u r e  

t o  the error analysis so w e  shall give only the  l a t t e r .  

w e  sha l l  assume t h a t  the  regular i ty  (2.13) and approximability condi- 

t ions' ( 2.22) - ( 2 . 2 3 )  hold. 

Also  

Theorem 7 .  L e t  (1 -12)  hold. Then there is a constant 

0 < C < 00 depending only on a i n  (1.12) and w such tha t  

if hC -< 1, then 

Moreover, C approaches in f in i ty  l inear ly  with Iw 1 3/2 . 
Proof. L e t  

Then the  defining equations ( 2 . 5 )  - (2 .6 )  give 

be given and put  
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L e t  us f i r s t  estimate the l e f t  hand s ide  of (3.4) and i n  

the  process make a def in i te  choice for  vh and oh. The idea 

is t o  choose these functions so t ha t  the  l e f t  hand side becomes 

essent ia l ly  

problem (2 .11)- (2.12)  with data 

and 4 = E i n  (2.11)-(2.12) gives 

N 

2 2 
\\zh!\o + \\Ehl'o. TO do t h i s  we f i r s t  solve the  adjoint 

Letting w = zhy 
N f = s h y g  = N 

h 

Since B(-,*) is l inear  i n  each variable it follows from (3.5) t h a t  

A h  h h  A A  W e  naJ l e t  (v  y &  ) = (v yll, ) be the  Poisson projection of (,v ,&)), 
ry -h h 

i . e . ,  (2.15)-(2.16) holds. 

(2.15) - (2.16) w e  get  

Thus putt ing Zh = xh = Eh i n  

* Thus 
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and so 

2 A h  A h  'I:.,"; + 'lch\\o = C (EhJ& - &h) + B( ( Z Y E )  9 (vh,dh)) (3 -10) 
t 

W e  t rea t  the  second term on the  r igh t  hand s i d e  of (3.10) i n  a 

s imilar  way. 

j ec t ion  of (uo,yo ) .  

.( A A  I n  par t icular ,  we le t  [\,qh) be the Poisson pro- 

This gives 

and so  

(3.12) 

T o  estimate the f i r s t  t e r m  on the  r igh t  hand side of (3.13) 

we note that ( 2 . 1 4 )  gives 

A A  
IC (Eh$.$ - $h).1 KIIIEhl[QJ\b - ~h!IO - (3 5-14] 

O u r  approximation assumption (2 .23 )  gives 

A A l  - tbh\\, 5 C h !:C 1 (3.15) 1 A 

The regularity ( 2 . 1 3 )  of (2.11)-(2.12) can be used t o  bound 

i n  terms of the data w%,~h as follows: 
0 

A 
K (':E ' .  + "e \ I 2 )  (3.16) 0 h ?  Nh 

~ 

~ ~~ 
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Thus 

(3.17) 

The second t e r m  on t h e  r i g h t  hand s i d e  of (3.13) is t r e a t e d  

I n  p a r t i c u l a r ,  i n  a s i m i l a r  way. 

Combining (3.17)-(3.18) with  (3.13) w e  o s t a i n  (3.1). 

Remark. The l i n e a r  dependence on I r  ! Y  13’* I i n  t h e  error estimates 

’ is an order  of magnitude b e t t e r  t han  t h a t  ob ta ined  f o r  t h e  least  

squa res  approximation, where the dependence is q u a d r a t i c .  

The o rde r  of accuracy for a f i x e d  ill is not  best p o s s i b l e .  

For example, if t h e  s tandard  l i n e a r  elernent - piecewise constant 

combination is  used ( i .e . ,  k = 2 and -5 = I), t hen  we  get only 

f i r s t  o rde r  accuracy i n  yo and co as  i n  [3] and [ 6 ] .  



-14- 

84 Improved estimates. I n  t h i s  section w e  assume t h a t  the 

inclusion and decomposition properties (1.14)-(1.16) hold, and 

Show t h a t  the L2 e r rors  i n  u are  best possible.  Moreover, 

we show that  a superconvergence r e s u l t  holds for  the  sca la r  go. 

The s t a r t i n g  point is  t o  prove the l a t t e r  r e s u l t  for  the  Poisson 

projection, and then using the  approach of the  previous section 

show t h a t  it also holds for  w # 0 .  

-0 

J 

A A A  Lemma 1. Let ( i h , ~ l ~ h )  be the Poisson projection of [z,$) 
- 

defined by ( 2  -15) - (2 .16)  , and l e t  ah be the  bes t  L2 approxi- 

mation t o  5 i n  Sh. Then 

h Remark. If S consists of piecewise constant functions, 
- 

then the  value of dh i s  a given t r iangle  T is equal t o  t h e  

average of & over T.  The above estimate s t a t e s  t h a t  t h i s  func- 

t i on  w i l l  d i f fe r  from the Poisson projection by order O(h ) i f  

l inear  e l e m e n t s  a re  used to represent 

quadratic elements a re  used, t o  c i te  another popular combination. 

h 

2 

3 2h, or by order O(h ) i f  

Proof. Subtracting -' & i n  the  r igh t  and l e f t  hand sides 

of (2 .15 )  gives 

(4 .2 )  a 
h A  A h A  - h A  - b(z - d)h) = 9: - zh) + b(x Yh - &h) 

h h  for a l l  w . W e  u s e  the  inclusion property (1.14) t o  wri te  
w 
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h for xheb . In  addition, w e  u s e  the  decomposition property 

* (1015)-(1016) t o  w r i t e  

where 

h L e t  w = w i n  (4.2).  Then 
cy -h 

- 
A l s o ,  s ince  zbh is  the  best L2 approximation 

h (s ince 

(4.5) , ( 4 . 2 )  becomes 

d iv  E ~ E S  , by inclusion property) Thus, using (2.19)  and 

Cancellation of the  common factor gives (4.1)  . 
T o  apply t h i s  r e s u l t  t o  the case w # 0 ,  w e  r e t a in  the  approach 

of Section 3 except giving an a l te rna te  estimate for  the  t e r m  



-16- 

c(E,$~). To treat the latter we note that 

- A h  where ( u , , ~ )  is the Poisson projector of ( ~ , , c a , ) .  Let 'ph 

denote the best L2 approximation to 'oo in Sh. Then 

Assuming that w is constant we have 

(4.9) 

(4.10) 

- h is orthogonal to S . Thus 9O - (ph since 

Estimating the last term on the right of (4.11) as in (3.18) we 

obtain the following result. 

Theorem 2. Let the inclusion and decomposition properties 

(1.14)-(1.16) and assume w is a constant. There is a 0 < C < 00 
depending on ly  on a in (1.16) and w such that if Ch < 1, then 

where ah is the best L2 approximation to caO in sh. 

(4.12) 

. 

4 
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